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Abstract— Multiview point cloud registration is a funda-
mental task for constructing globally consistent 3D models.
Existing approaches typically rely on feature extraction and
data association across multiple point clouds; however, these
processes are challenging to obtain global optimal solution in
complex environments. In this paper, we introduce a novel
correspondence-free multiview point cloud registration method.
Specifically, we represent the global map as a depth map
and leverage raw depth information to formulate a non-linear
least squares optimisation that jointly estimates poses of point
clouds and the global map. Unlike traditional feature-based
bundle adjustment methods, which rely on explicit feature
extraction and data association, our method bypasses these
challenges by associating multi-frame point clouds with a
global depth map through their corresponding poses. This data
association is implicitly incorporated and dynamically refined
during the optimisation process. Extensive evaluations on real-
world datasets demonstrate that our method outperforms state-
of-the-art approaches in accuracy, particularly in challenging
environments where feature extraction and data association are
difficult.

I. INTRODUCTION

Point cloud registration is a fundamental task with exten-
sive applications across various domains, including 3D re-
construction, odometry estimation, multi-sensor point cloud
fusion, augmented reality, and virtual reality. 3D point clouds
are generated from depth data captured by sensors or re-
constructed through stereo image matching. Since data is
acquired from different sensors or at different times, point
clouds are represented in distinct local coordinates. The
goal of point cloud registration is to align these disparate
point clouds into a unified coordinate system, facilitating the
construction of a consistent and comprehensive 3D model.

The most common approach to point cloud registration
is pairwise registration, which estimates the transformation
needed to align a source point cloud with a target point cloud.
However, in applications such as 3D reconstruction, a single
pair of point clouds is often insufficient to capture the com-
plete structure of an object. To address this, multiple point
clouds must be aligned within a unified coordinate system,
a process known as multiview point cloud registration.

Early solutions to the multiview registration problem re-
lied on sequential pairwise registration [1]. However, such
approaches suffer from accumulating relative pose errors as
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the number of frames increases, ultimately failing to produce
a globally consistent point cloud. To mitigate this issue,
a common approach is to formulate the problem as pose
graph optimisation (PGO) [2], [3] or feature-based bundle
adjustment (BA) [4]-[9]. PGO-based methods optimise only
the poses, while feature-based BA approaches jointly refine
both poses and features in the global map. Typically, the joint
optimization scheme can lead to more accurate results.

The feature-based BA method for multiview registration
typically consists of two key steps. The first step, data
association, involves identifying correspondences between
features across multiple point clouds. Then, using these
known correspondences, the problem is formulated as a
nonlinear least squares (NLLS) optimisation, relating both
poses and features. When data association is accurate, the
NLLS problem can be effectively solved using reliable non-
linear optimisation solvers [10], [11]. However, it is a major
challenge to establish reliable data association in complex
environments, such as those with highly repetitive textures.

In this paper, we propose a novel correspondence-free
multiview point cloud registration method guided by depth
information. We leverage the depth information of each
point cloud to establish constraints on the global point
cloud and poses of individual point clouds. Specifically,
we formulate multiview registration as a joint optimisation
problem, treating both poses of all point cloud frames and
the global map as variables. The key novelty of our approach
lies in representing the global map as a depth map, where
each point in point clouds is associated with the global depth
map via its corresponding poses. In this formulation, data
association between multi-frame point clouds is implicitly
incorporated through the projection relationship between the
point clouds and the depth map and dynamically refined
during the optimisation process. Our experimental results
demonstrate that the proposed method outperforms state-of-
the-art approaches in real-world scenarios, particularly in
challenging environments where establishing accurate data
association is difficult. The main contributions of our work
are summarised as follows:

1) We formulate multiview point cloud registration as

a joint optimisation problem, which simultaneously
optimises the poses of multiple point clouds and the
global map.

2) We represent the global map as a depth map, lever-
aging raw depth information to guide the optimisation
process. This eliminates the need for explicit data asso-
ciation, enabling robustness in complex environments.

3) We provide an analytical derivation of the Jacobian for



the proposed optimisation problem, ensuring efficient
and accurate problem-solving.

4) Extensive experiments on real-world datasets demon-
strate that our method outperforms state-of-the-art ap-
proaches in robustness and accuracy.

II. RELATED WORK
A. Pairwise Registration

Pairwise registration is a foundational approach in point
cloud registration, widely adopted due to its simplicity and
effectiveness in aligning two scans. The earliest method, It-
erative Closest Point (ICP) [12], iteratively minimises point-
to-point distance but highly sensitive to initial estimates,
noise, and outliers, often leading to local minima. To improve
robustness and convergence, variants like point-to-plane ICP
[13], Generalised ICP [14], and Anisotropic ICP [15] incor-
porate local point cloud structures and anisotropic covariance
modelling. However, these methods remain sensitive to initial
pose estimates and struggle in noisy or sparse environments.

To enhance the robustness of these methods, RANSAC
[16] is commonly employed. However, its performance de-
teriorates as the outlier ratios increase. Recently, TEASER
[17], a state-of-the-art sequential method for point cloud reg-
istration, has been proposed. It follows a sequential approach
by estimating pairwise transformations between consecutive
frames and incrementally constructing the global point cloud.
By leveraging a truncated least-squares optimisation frame-
work, TEASER enhances robustness and efficiency, making
it particularly effective under extreme outlier conditions.

Although pairwise registration methods can efficiently
and robustly estimate the relative transformation between
two point clouds, a single two-frame alignment is often
insufficient to capture the complete structure of an object
or environment. This limitation restricts their applicability in
tasks such as 3D reconstruction.

B. Multiview Registration

Multiview registration aims to optimise the poses of multi-
ple overlapping point cloud frames simultaneously to achieve
global consistency. Unlike pairwise registration methods
which only consider two frames at a time, multiview regis-
tration addresses the global alignment of all frames, reducing
accumulated errors and improving overall accuracy.

PGO methods [18], [19] have emerged as a popular ap-
proach for multiview registration due to their computational
efficiency and scalability. By representing the environment as
a graph of keyframes connected by relative pose constraints,
these methods efficiently optimise camera trajectories while
maintaining real-time performance. However, PGO only op-
timises the poses of point cloud frames while neglecting the
map. This approximation may contribute to suboptimal detail
preservation in the registered 3D global point cloud.

In contrast, BA-based methods can jointly optimise poses
and maps, fully utilizing observation information. As a result,
they are expected to achieve higher precision in reconstruc-
tion and more accurate camera pose estimation than PGO-
based methods. Traditional feature-based BA methods [4]

rely on extracting feature points and establishing constraints
by identifying the same feature points across multiple point
clouds. However, despite extensive research on feature points
extraction [20], [21], reliably detecting and accurately associ-
ating feature points in complex scenes with repetitive textures
remains challenging, limiting the effectiveness of traditional
feature-based BA.

To overcome these limitations, recent research has ex-
plored parameterising point clouds into geometric features
(e.g., planes or edges) for BA formulation. For example,
BALM [7] leverages geometric primitives (e.g., planes, lines)
to enhance optimisation stability and reduce computational
complexity, while BALM2 [8] and BAREG [9] further
improve efficiency by using point clusters and avoiding
individual point enumeration. These methods enable the joint
optimisation of poses and geometric features, improving
accuracy in structured environments. However, their per-
formance deteriorates in unstructured scenes where distinct
geometric features are scarce.

Therefore, existing multiview point cloud registration typ-
ically depends on explicit feature extraction and data as-
sociation, which can be unreliable in feature-sparse, noisy
environments and unstructured scenes.

C. Joint Optimisation of Poses and Non-feature Map

Several other BA methods also avoid explicit feature
extraction and data association by jointly optimising both
pose and non-feature-based maps. BAD-SLAM [22] em-
ploys a direct BA approach that minimises both reprojection
photometric errors and geometric errors. However, directly
optimising all pixel points is computationally expensive. To
mitigate this, BAD-SLAM adopts an approximation scheme
that first optimises only the pose and then updates the
surfel representation, which inevitably reduces optimisation
accuracy. Additionally, Occupancy-SLAM [23], [24] jointly
optimises robot poses and an occupancy grid map to enhance
localisation and mapping accuracy. Similarly, [25] introduces
an efficient framework to optimise a global occupancy map
alongside the coordinate frames of local submaps. Kimera-
PGMO [26] jointly optimises poses and mesh representa-
tions. While these methods also consider joint optimisa-
tion of poses and non-feature-based maps, they are not
specifically designed for multiview point cloud registration
and employ different non-feature map representations as
compared with this paper.

II1. METHODOLOGY

Our approach considers the joint optimisation of the
camera poses and the depth map, leveraging raw depth
information without the need for explicit data association.
In this section, we will illustrate how the depth observations
can be linked to the camera poses to formulate the NLLS
problem. Additionally, we obtained an analytical Jacobian
derived from the gradient of the depth map, ensuring efficient
and accurate optimisation.



A. Task of Multiview Registration and Depth Constraint

The input to multiview point cloud registration is a

sequence of point clouds, denoted as P = {P; | i =
1,..., N}. The task is to estimate their corresponding poses
X" ={X] € SE3) | i = 1,...,N}, where X] =

[t[,6]] . so that a consistent global 3D point cloud can
be obtained by projecting the individual point clouds into
the global coordinate system using these estimated poses.
Here, t; = [tf,tf,tf] represents x-y-z position, and 6; =
[Gf,Gf,Hf]T represents the Euler angles (roll, pitch, yaw)
corresponding to rotation matrix R;.

To model the global environment, we first represent it as
a 2D depth map D = [---,D(dy, ), -] in the global
coordinate, where D(d,, ) represents the depth of grid
dnn(l < m < l,,1 <n <1l,). The the depth map
resolution, s, represents the real-world distance between
adjacent grids. The depth value of each grid D(d,, ) in
the depth map is computed by averaging the depth values of
all the points from the 3D point cloud whose x-y coordinates
lie within this grid.

Next, the position of the j-th point in the ¢-th point
cloud P;, denoted as p;;, can be projected into the global
coordinate using its corresponding pose X, i.e

pi; = Ripij + ti = [, 455, 215] M

Assuming that the poses are accurate and the environment
is static, the depth value of the projected point located on
depth map D([p};]..y/s) should be very closed to its depth
measurement in the global coordinate [pf;]., which forms
the depth constraint. Here,

= [ehy vl " [Ph)e = 2 @

The depth measurement [p};]. can be obtained directly
from depth sensors (e.g., LiDAR, structured light, and depth
cameras) or estimated via a stereo matching algorithm when
using a stereo camera, and then projected into the global
coordinate.

B. NLLS Formulation

Based on the depth constraint described in Section III-
A, we now formulate the NLLS problem to simultaneously
optimise the robot poses and the depth map. The state vector
of the proposed problem is

X =[(x"",D"T, 3)
where

X =[(xnT,.. L (xq )T}T

1 ’ ) N ) . (4)
D=[D(di), - ,D(d,.)l -
The objective function is defined as

F(X) =wpfP(X) +ws f*(X), (5)
where fP(X) and f°(X) represent the depth constraint

term and the smoothing term, respectively. wp and wg
denotes their corresponding weights.

1) Depth Constraint Term: By the local-to-global projec-
tion in (1), all points in the point cloud sequence P can be
projected to the depth map D to compute the difference in
depth values to formulate the NLLS problem, i.e., minimise

o0 =280 (%)

Since [pgj]my /s may lie at any position on depth
map D rather than on a discretised grid, its depth
value D([pf;]+y/s) can be approximated by bilinear in-
terpolation using depth values of the four neighbouring
grids around it. Suppose [p;;].y/s locates within four
grids, dm n, Amt1,my Anont1, Amt1,n41, the depth value of
[Pi;lzy/s can be calculated by

2

(6)

D(d.n)
[pgj]my . D(d m+1, n)
b < § ) -H D( m n+1) (7)
D(dm+1,n+1)

where H denotes the bilinear interpolation coefficients.

By using the depth constraint term, the sequence of point
clouds P, their corresponding poses X", and the depth map
D are linked together.

2) Smoothing Term: To improve the robustness and con-
vergence of our method, we introduce a smoothing term
by penalising large variations between neighbouring grids,
ensuring that depth transitions smoothly across the map, i.e.,
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C. Iterative Solution and Analytical Jacobian

1) Iterative Solution: Our NLLS formulation in (5) seeks
X such that

F(X) = [1F(

is minimised. This formulation can be solved by the Gauss-
Newton method. The update vector A in each iteration is
the solution to

X)w = F(X)'WF(X) ©)

JTWJIA = -J " WF(X)

where J is the Jacobian 0F(X)/0X.

2) Analytical Jacobian: We now derive the analytical
Jacobian of our NLLS formulation to accelerate algorithm
convergence and enhance robustness.

The Jacobian matrix J consists of three parts: the Jacobian
of the depth constraint term w.r.t. the poses Jp, the Jacobian
of the depth constraint term w.r.t. the depth map Jp, and the
Jacobian of the smoothing term w.r.t. the depth map Js.

(10)



For the depth constraint term fP(X), the Jacobian w.r.t.
the pose X is give by

_ o(pi,): — D(pi;lay/5))

Jp = OXT
Ol OD(lle/s) @l /s D
D (A R <

We can first calculate 9(p};/s)/0X] as

o(pl,;/s o(p;/s) O(p};/s 1
(pi;/5) _ [0/ ), (pi;/5) L Ly Rip).
. otr 00; s
(12)
where R represents the derivative of R; w.r.t. the orienta-
tion. Then we can obtain
8([1’23]961//5) 1

= ; . [IS*BaR;pij]xya

X
,8 ’ (13)
aXZT 33, LY Pijlz,

where [-];, and [-], are defined in (2).

In (11), 0D([p};]xy/5)/0([P};]zy/s) can be considered
as the gradient of the depth map at point [p};]zy/s,
which can be approximated by the bilinear interpolation
of the gradients of the depth at the four adjacent grid
VD(dmmn), s VD(d(mi1,n41)) around [p;]e, as

VD(dp.n)
5D([P§j]my/5) VD(dpi1,n)
Wl g ’ 14

(e ) VD(dy 1) (1
vD(dm-&-17n+l)

where the gradient of depth map D at all the grid V.D can
be easily calculated from the depth map.

The Jacobian of depth constraint term w.r.t. all the grids
of depth map Jp can be easily calculated as

OD([p};]ey/5)
: 7D(dm+1,n+1)7 e )]T

15)

Finally, it is easy to find that the Jacobian of the smoothing

term w.r.t. the depth map Jg is equal to a constant matrix
that consists of 1, —1, and 0.

IV. EXPERIMENTS
A. Baseline

To evaluate our method’s effectiveness, we compare it
against five state-of-the-art approaches:

1) Pairwise registration methods: TEASER [17] is one of
the most robust and efficient pairwise registration methods.
To further enhance the accuracy of TEASER, we incorporate
ICP into TEASER for fine registration, denoted as T+ICP.
To extend pairwise registration to the multiview registration
problem, we apply sequential registration across multiple
frames to estimate their poses and refine the final global
point cloud.

(b) Industrial Environment

(a) Laboratory Environment

Fig. 1: The environmental setup for data collection includes
both laboratory and industrial scenes. The laboratory envi-
ronment measures 2.4x1.2«x0.7 (m), and industrial environ-
ment measures 7.0%6.0%x3.0 (m).

2) Integrating TEASER with batch optimisation: Sequen-
tial multiple executions of TEASER in the multiview point
cloud registration task inevitably lead to pose error accumu-
lation, resulting in an inconsistent global point cloud map. To
address this issue, additional batch optimisation is required to
enhance global accuracy across multiple frames. We integrate
TEASER with two batch optimisation strategies:

o T+PGO: We apply pose graph optimisation to refine the
global alignment, treating the results from TEASER as
relative pose measurements.

o T+BA: We extract feature points from point clouds to
formulate a feature-based bundle adjustment problem,
using the results from sequential TEASER execution as
the initial guess.

3) Bundle adjustment methods based on alternative feature
representations: BALM?2 [8] is the state-of-the-art method in
this category, leveraging planar features rather than feature
points, as used in T+BA, to construct bundle adjustment.

B. Experimental Datasets and Setup

Our experiments involve two distinct self-collected
datasets: a laboratory dataset, captured in a controlled lab-
oratory environment with three scenes (Scene 1-3) and a
industrial dataset, recorded in a less structured environment,
including three scenes (Scene 4-6) as well. Fig. 1 illustrates
the experimental setups for both environments.

1) Laboratory dataset: We collected the dataset with reli-
able ground truth using a ZED 2 camera mounted on a UR16
robotic arm. The depth accuracy of the camera is less than
1% of the measured depth, and the pose translation errors of
UR16 are within 0.05 mm. To obtain accurate ground truth
poses, we captured multiple images of a checkerboard from
different positions and orientations while simultaneously
recording the end-effector poses of the robotic arm at each
position. The hand-eye calibration algorithm [27] was then
applied to compute the transformation between the camera
and the end-effector frame, ensuring accurate alignment with
the robotic arm’s frame. In addition, the ground truth of the
global point cloud is obtained by transforming local point
clouds into a global coordinate system using known ground
truth poses of depth camera.

2) Industrial dataset: The industrial experiments involved
more complex experiments. The setup featured a truss system
securely mounted with a structured-light camera, SEIZET



TABLE I: Poses Accuracy of Different Methods Evaluated by Laboratory Dataset

Scene Metric TEASER T+ICP T+BA T+PGO BALM2 Ours
MAE((Trans/m)) 0.0141 0.0113 0.0083 0.0135 0.0333 0.0068
RMSE((Trans/m)) 0.0202 0.0152 0.0139 0.0206 0.0527 0.0099

1 MAE(Rot/rad) 0.0239 0.0118 0.0159 0.0215 0.0446 0.0146
RMSE(Rot/rad) 0.0349 0.0159 0.0238 0.0345 0.0944 0.0217
MAE((Trans/m)) 0.0114 0.0124 0.0169 0.0115 0.0413 0.0075
RMSE((Trans/m)) 0.0144 0.0165 0.0292 0.0133 0.0655 0.0092

2 MAE(Rot/rad) 0.0111 0.0119 0.0295 0.0229 0.1167 0.0116
RMSE(Rot/rad) 0.0145 0.0153 0.0479 0.0265 0.1759 0.0151
MAE((Trans/m)) 0.0392 0.0482 0.0579 0.0643 0.0377 0.0139
RMSE((Trans/m)) 0.6266 0.0655 0.1260 0.0915 0.0638 0.0194

3 MAE(Rot/rad) 0.0302 0.2421 0.2093 0.2137 0.0327 0.0141
RMSE(Rot/rad) 0.0384 0.6266 0.5797 0.3451 0.0524 0.0211

TEASER

Scene 1

Scene 2

Scene 3

Ground Truth

Fig. 2: Global point clouds registered by different methods using the laboratory dataset. The areas highlighted by red and
black boxes show detailed figures to enhance the comparison between our and other methods.

SP1000, which provides a depth accuracy of 0.32 mm at a
working distance of 3000 mm. The system moves in the X-
Y direction only, which is driven by two motors, ensuring a
constant height throughout data collection.

The objects captured in this dataset included crushed
stone, steel slag, and various types of scrap. The dataset
consists of industrial scenes characterised by more complex
terrain and less controlled conditions to evaluate performance
across different geometric structures. Including a steel slab
with a planar surface, a steel coil with a curved surface, and
a medium-thick plate with multiple planar surfaces, while
keeping the ground features unchanged.

Unlike the laboratory dataset, this dataset does not include

ground truth. To facilitate the evaluation of algorithm accu-
racy, three markers on the floor were strategically placed
and fixed within Scenes 4-6. Specifically, one marker was
placed at the origin of the global frame, while the other
two were positioned at the farthest locations along the X-Y
direction. The known distances between these markers serve
as a reference for accuracy evaluation.

C. Evaluation of Pose Accuracy

We first quantitatively evaluate the accuracy of the es-
timated poses using the laboratory dataset, where ground
truth of poses are available. Table I presents the quantitative
accuracy results across different state-of-the-art methods. We
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BALM2

Ours

Fig. 3: Comparison of performance among different methods applied to industrial dataset Scene 4.

T+ICP

T+PGO

Scene 5

T+BA

BALM2 Ours

Fig. 4: Comparison of performance among different methods applied to industrial dataset Scene 5.

evaluate pose accuracy using Mean Absolute Error (MAE)
and Root Mean Squared Error (RMSE) for both translation
(in metres) and orientation (in radians). The best-performing
values are highlighted in red, and the second-best in blue.

As shown in Table I, our method achieves the lowest
errors across the majority of metrics. In Scene 1, while
T+ICP attains the best orientation accuracy, it performs
significantly worse in translation against ours. A similar
trend is observed in Scene 2, where TEASER achieves better
orientation accuracy but exhibits higher translation errors
than ours. This demonstrates that some methods excel in
one metric but fail to maintain overall accuracy.

A noteworthy observation is that T+BA does not per-
form well on the laboratory dataset and even underperforms
compared to TEASER on several metrics. This is partly

because the dataset covers a small scene size with a limited
number of frames, resulting in a relatively low accumulation
of errors from the sequential execution of TEASER. Conse-
quently, the impact of global optimisation in T+BA is less
significant. More importantly, the laboratory dataset contains
many regions with repetitive textures, making it difficult for
T+BA to establish accurate data association between frames.
This challenge directly affects the effectiveness of feature-
based bundle adjustment, ultimately reducing its registration
accuracy. These results highlight the limitations of T+BA
in environments with repetitive structures, where unreliable
feature correspondences negatively impact its performance.
In contrast, our method does not require feature extraction
or explicit data association, allowing it to avoid these limita-
tions. As a result, it remains robust in environments with



Scene 6

BALM2

Fig. 5: Comparison of performance among different methods applied to industrial dataset Scene 6.

repetitive textures, maintaining high registration accuracy
regardless of scene structure. Additionally, BALM2 does
not achieve good results on the laboratory dataset for most
metrics. This is because BALM2 relies on planar feature
extraction and constructs planar constraints to formulate the
bundle adjustment problem. However, in this scenario, many
objects are not entirely planar, limiting its effectiveness.
In contrast, our approach eliminates the need for feature
extraction by associating the point cloud with the global
depth map, effectively avoiding this issue.

D. Evaluation of Global Point Cloud Quality

We first qualitatively assess the map quality by visualising
the registration results of the 3D global point cloud using
both the laboratory dataset and the industrial dataset.

The 3D global point clouds registered by different methods
using the laboratory dataset are visualised in Fig. 2. The
areas highlighted by red and black rectangles illustrate that
our method achieves superior results compared to the others.
It can be observed that our method produces a reconstruction
closest to the ground truth, with clearer and sharper contour
details and well-defined holes. In contrast, the global point
cloud registrations produced by TEASER and T+PGO ex-
hibit fuzzy edges and alignment errors across regions. This
demonstrates two key issues: first, the sequential execution
of TEASER in multiview registration leads to error accu-
mulation, impacting overall accuracy. Second, PGO focuses
solely on pose refinement while ignoring the global map,
resulting in registered point cloud maps with poorer detail
preservation. These findings highlight the importance of
jointly optimising both poses and the global map in mul-
tiview registration to achieve a more accurate and consistent
reconstruction. While BALM2 generally performs well, it
struggles in Scene 2 due to the scarcity of high-quality
planar features. Notably, T+BA outperforms TEASER in

Scene 1 and Scene 2 but fails in Scene 3, likely due to
incorrect data association. This highlights the limitations of
traditional feature-based BA approaches in complex scenes
where feature correspondences become unreliable.

TABLE II: Marker Distances Errors on Industrial dataset

Scene Direction TEASER T+PGO T+BA BALM2 Ours
4 Y (m) 0.0479 0.0198  0.0327 0.0339  0.0300
X (m) 0.0343 0.0059  0.0607 0.0534 0.0152

5 Y (m) 0.0369 0.0246  0.0414 0.0317 0.0226
X (m) 0.0429 0.0413  0.0530 0.0371 0.0289

6 Y (m) 0.0768 0.0105 0.0139  0.0451  0.0091
X (m) 0.0186 0.0096 0.0822  0.0536  0.0367

We also qualitatively evaluate map quality using the indus-
trial datasets characterised by less structured environments.
As shown in Fig. 3, Fig. 4 and Fig. 5, our method yields a
darker global map, indicating higher registration accuracy in
overlaps and a more compact reconstruction. Detailed views
show sharp contours, preserving fine structures and complex
details like scrap geometries and irregular slag edges. For
example, in Fig. 3, the red dashed box highlights a steel slag
region with distinct colour gradients and sharp edges, while
the rectangular billet’s upper edge is precisely aligned. In
contrast, T+ICP and T+PGO suffer from noticeable blurring
and splicing mismatches, with T+PGO showing significant
edge misalignment. Similarly, in Fig. 4, the white solid box
highlights the edge of the steel coil, where T+ICP shows
similar misalignment. Although T+BA and BALM2 improve
detail preservation, localised distortions and blurring remain,
as highlighted by the blue boxes and red dashed in Fig. 3
and Fig. 4. In contrast, the global point cloud at the top
and the deep purple dashed box in Fig. 5 show that T+BA



has one misaligned frame, while BALM2 suffers even more
misalignment.

Finally, we leverage prior information on marker distances
in the industrial dataset to compute surface distance errors,
providing a quantitative measure of global point cloud reg-
istration quality. As shown in Table II, our method achieves
either the best or second-best performance across all metrics.
While T+PGO and TEASER slightly outperform our method
in certain metrics, the qualitative results in Fig. 3, Fig.
4 and Fig. 5 reveal inconsistencies in the overlaps. This
suggests that these frames may suffer from large orientation
errors or frames without markers may have inaccurate poses.
Therefore, our method demonstrates the most reliable global
point cloud registration performance on the industrial dataset.

E. Time Consumption

We further compare the registration runtime with BALM2,
T+BA, and T+PGO using Scene 6, which consists of 21
frames of point clouds. For our method, under a resolu-
tion of 0.05 m, the number of optimisation iterations until
convergence is 15, and the runtime per iteration is approxi-
mately 3-5 seconds. In comparison, BALM2 completes the
optimisation in around 5 seconds, while T+BA requires 45
seconds in total. Although PGO’s pose-only optimization is
inherently fast, obtaining multi-frame relative poses using
TEASER is significantly more time-consuming, averaging
10 seconds per relative pose computation.

V. CONCLUSION

This paper formulates the multiview point cloud reg-
istration task as a correspondence-free bundle adjustment
problem. The key novelty lies in implicitly associating point
clouds with a depth map, eliminating the need for explicit
feature extraction and data association. As a result, our
method avoids the errors commonly encountered in feature-
based BA approaches due to insufficient feature extraction or
incorrect data association in low-texture, repetitive-texture,
or highly unstructured scenarios. We evaluate our method
on two self-collected datasets, covering both laboratory and
industrial environments, and demonstrate that it outperforms
state-of-the-art algorithms, particularly in challenging scenar-
ios where feature extraction and association across multiple
frames are difficult.
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